
220

ON COMPRESSION

Cory Arcangel
2k7 – 2k8

ABSTRACT: JPEGs look the way they do because
of quantization and their use of the Discrete Co-
sine Transform (DCT). The DCT is a technique
for converting a signal into elementary frequency
components. It is widely used in image compres-
sion. Here we will go through some examples to
explain how the DCT works. The text is kind of
a summary, and if you want to bring the noise, all
the math is in the end notes.



221 Cory Arcangel

1. LOSSY VS. LOSSLESS

The whole point of digital image compression is to be able
to reconstruct an image without having to send all the data. This is be-
cause data, especially in large amounts, is expensive and slow to trans-
port. Either over cable lines, phone lines, or wirelessly, it is all slow. To
this day, the most efficient and cheapest way to transport large amounts
of data is by mailing a hard-drive to the destination, and I don’t mean
emailing, I mean the kind of mailing that involves the post office. So
compression is valuable because the less we need to send the cheaper
and faster it is. There are two kinds of compression. One is called Lossy,
and the other is called Lossless. Lossless compression does not lose any
information from the original source. How can this be? Well, let’s say
we wanted to send this: ‘a a a a a a a a a b a’ and we were going to send
it over the phone by voice. As opposed to having to send all the informa-
tion by reading out each letter one at a time, we could just tell someone
‘9a’s, one b, and one a’ and they would know we meant ‘a a a a a a a a a
b a’ and we have saved ourselves a bit of breath. In computer language it
means we have stored all the information using less space. To generalize
a bit, if you have ever opened a ‘zip’ file, your computer has seen ‘9a’s,
one b, and one a’ and translated it to ‘a a a a a a a a a b a’. This is
Lossless compression. On the other hand, Lossy compression actually
loses data. Lossy compression, therefore, can not be used for text, or
any application where all the information must remain intact. It is used
for images, music, and video. This is because, believe it or not, our eyes
and ears are pretty crap, and we don’t usually notice missing bits here
and there. Lossy compression works by getting rid of the information
which isn’t so important to us. To generalize a bit again, if we tried to
send ‘a a a a a a a a a b a’ using Lossy compression over the phone,
we would just get lazy and say ‘11a’s’. In this article, we are going to
focus on the Discrete Cosine Transform, aka the DCT, a math formula
used in Lossy compression. The reason I’m interested in this Transform
is because, when used with quantization, it is what gives JPEGs that
‘JPEG look’. By ‘JPEG look’ I mean those crappy compressed blocky
images you need to squint your eyes to understand that are all over the
internet. And in case you haven’t noticed, this look is everywhere else
as well (ads, digital cameras, digital video, etc.) If the ’80s gave us ‘hot’
colors and ‘rad’ graphics, and the ’90s gave us slick vector design, then



ON COMPRESSION 222

the 00’s are giving us compressed blocky images.
JPEGs are everywhere today because they have become

a standard, or a universally agreed upon set of rules. Today JPEG
is a nickname for a file type, but JPEG originated as a shorthand for
the group that proposed the standard, the Joint Photographic Experts
Group. This standard was created in Geneva in 1992 when members
of the CCITT and the ISO/IEC (now together known as JPEG) got
together in Geneva and released the technical document ISO/IEC IS
10918-1 / ITU-T Recommendation T.81. This paper recommended
‘REQUIREMENTS AND GUIDELINES’ of the ‘DIGITAL COMPRES-
SION AND CODING OF CONTINUOUS-TONE STILL IMAGES’.
These guidelines, through third party development, eventually became
known as JPEG files.

2. THE GUY BEHIND THE GUY BEHIND THE GUY

As mentioned earlier, the heart of JPEG is the DCT for-
mula, and the DCT relies on cosines. The easiest way to think of cosines
is to imagine yourself walking counterclockwise around a circle. This
circle is centered on the X and Y axis, and has a radius of 1. Radius
is the length from the center of the circle to the edge. A cosine of the
angle in respect to the positive horizontal axis (aka, the length in our
case because we are on a unit circle (radius = 1)) is our position on the
x axis as we walk around the circle if we started at X = 1. We must
also remember that the length around a circle with a radius of 1 is 2pi.
So, cos(0) is 1, because we haven’t gone anywhere; we are still stand-
ing at the beginning, at X = 1, cos(pi) is -1, because we have travelled
halfway around the circle to X = -1, and cos(2pi) is 1, because since we
have travelled all the way around our circle, we have ended up back at
the beginning (Figure 1). It is this cyclical pattern which is useful in
compression (Figure 2). To see the DCT in action we will start with
the 1D DCT (Figure 3) formula and use it to compress the input 3,2,1
(Figure 4). DCT-based compression has four steps. First the DCT for-
mula creates basis functions, then it compares the input data to those
basis functions, creating what are called DCT coefficients, then those co-
efficients are quantized, and the last step is decompression, where all this
is done in reverse to recreate our data. The first step of our process can
be seen in Figure 5.1 These are the basis functions for our input, which



223 Cory Arcangel

Figure 1: cosine of 0, pi, and 2pi

Figure 2: Cosine curve of x = 0 to 40

consist of cosine curves of increasing frequency. They can be thought
of as building blocks. Every combination of 3 digits can be recreated
by adding these blocks together in different proportions. The second
step in the process is comparing our input to our three basis functions
to generate three DCT coefficients. Our DCT coefficients represent how
much of each basis function is present in our input. In our example, our
three DCT coefficients generated by the 1D DTC are 3.46410, 1.41421,

F (u) =
N−1
X

x=0

w(i)f [x]cos
(2x + 1)uπ

2N

if i = 0, w =
p

1/N , and if i != 0, w =
p

2/N

Figure 3: 1D DCT formula. w(i) is a weighting factor fyi



ON COMPRESSION 224

Figure 4: Our 1D DCT example input

(a) Basis function 1 (b) Basis function 2 (c) Basis function 3

Figure 5: Basis Functions for a DCT of length 3

and 0.2 From these values we can see that our input contains elements
of our first and second basis function, but none of the third. This should
make sense since our input numbers are a straight line, so they do not
contain any data which is similar to the curve in the third basis function.
If our DCT formula in this example takes in 3 digits as input and we
end up with 3 digits as output, how does this help us save space? The
third step, quantization, is the key to this question. Quantization is ba-
sically a way to discard DCT coefficients. In this case we would discard
our third DCT coefficient because it doesn’t help us describe our input.
So when we get to the last step in the process which is reversing all of
this in order to reconstruct our original input, we will use only 2 DCT
coefficients to do this.3 The same information now takes only two-thirds
of the space!

3. 2D

To work on an image as opposed to a string of input, we
need to use the 2D DCT formula (Figure 6). This is basically the same
as the 1D formula, except it works on a matrix. The input we’ll compress
in this example is in Figure 7. So again our first step is generating the



225 Cory Arcangel

F (u, v) =
N−1
X

x=0

N−1
X

y=0

w(i, j)f [x, y]cos
(2x + 1)uπ

2N
cos

(2y + 1)uπ
2N

if i or j = 0, w =
p

1/N , and if i or j != 0, w =
p

2/N

Figure 6: 2D DCT formula

(a) Input
Image

2

6

4

255 255 255

0 0 0

0 0 0

3

7

5

(b) Input matrix

Figure 7: Our input matrix

basis functions (Figure 8).4 As in Figure 8, our basis functions with the
lower cosine frequencies are on the top left and the basis functions with
the higher cosine frequencies are on the bottom right. Next, we compare
our input image to our basis functions to generate our DCT coefficients.
Then, we’re left with 9 DCT coefficients (Figure 9).5 These numbers
tell us our input only contains three of our nine basis functions, and one
can see the graphic similarities between the basis functions on the left
side of Figure 8, and our input in Figure 7. All the other basis functions
do not relate. The third step is quantization. This happens by taking
the DCT coefficient matrix (Figure 9) and dividing it by a quantization
matrix, then rounding to the nearest integer. An example matrix is used
in Figure 10. The result, when reversed (Figure 11), gets rid of one of
our DCT coefficients. If we complete step four by using the quantized
coefficients to reconstruct our input, we clearly have quite a big differ-
ence (Figure 12).6 Where did that grey bar come from? EXACTLY!!
We have saved a ton of space, because now we only need to transmit
‘250, 250, and 7 0s’ to recreate our input, but our image no longer looks
how it was supposed to! This is because we have discarded the high
frequency basis functions, so we can no longer create sharp contrasts.
But it’s similar, we get the idea, and this is probably good enough.



ON COMPRESSION 226

Figure 8: The 9 DCT basis functions for a 3 by 3 matrix

2

6

4

255.00000 0 0

312.30994 0 0

180.31223 0 0

3

7

5

Figure 9: Our 9 DCT coefficients

2

6

4

255.00000 0 0
312.30994 0 0

180.31223 0 0

3

7

5
/

2

6

4

10 50 400
50 50 400

400 400 400

3

7

5
=

2

6

4

25 0 0
6 0 0

0 0 0

3

7

5

Figure 10: Quantization table



227 Cory Arcangel

2

6

4

25 0 0

6 0 0
0 0 0

3

7

5
*

2

6

4

10 50 400

50 50 400
400 400 400

3

7

5
=

2

6

4

250 0 0

250 0 0
0 0 0

3

7

5

Figure 11: Reverse Quantization

(a) Our input (b) Our input re-
constructed by us-
ing the quantiza-
tion table in Fig-
ure 10

Figure 12: Reconstructing our input for our 2D 3 x 3 matrix

4. THE JOINT PHOTOGRAPHIC EXPERTS

The only difference between what we just did and a JPEG,
is that a JPEG always splits the image into 8 x 8 blocks and then these
8 x 8 blocks are run through the 2D DCT. 8 x 8 blocks are used because
they are small enough to have consistent spatial qualities. Even at high
rates of compression, we can still make out the original image. The basis
functions for a JPEG are shown in Figure 13. Also, JPEGs don’t specify
what quantization matrix is used. Photoshop’s quantization matrix is
different from Canon, etc. etc., so actually one has very little control
of the discarded information. Awesome. In Figure 14 and Figure 15 we
can see a sample JPEG compressed with a sample quantization matrix.
Take a close look — we are recreating the image only using the top
left basis function of Figure 13. Hopefully you can see now that heavily
compressed JPEGs are really a bunch of 8 by 8 squares composed of only
the first few low frequency basis functions of an 8 x 8 2D DCT (Figure
13). We get a 90 percent reduction in file size because we only need to
send a few DCT coefficients down the line, but we get an image which
is only a shadow of its former self. Welcome to the future.



ON COMPRESSION 228

Figure 13: Our Basis functions for a JPEG

Figure 14: Our JPEG input



229 Cory Arcangel

2

6

6

6

6

6

6

6

6

6

6

6

4

51 101 151 201 251 301 351 401

101 151 201 251 301 351 401 451

151 201 251 301 351 401 451 501
201 251 301 351 401 451 501 551

251 301 351 401 451 501 551 601

301 351 401 451 501 551 601 651
351 401 451 501 551 601 651 701

401 451 501 551 601 651 701 751

3

7

7

7

7

7

7

7

7

7

7

7

5

Figure 15: Our JPEG quantization table

Figure 16: Our compressed JPEG using the above input and
quantization table (Figure 14 and 15)



ON COMPRESSION 230

NOTES



231 Cory Arcangel



ON COMPRESSION 232

Special thanks to Danny Comer for helping with
these concepts.


